In recent years, graph representation learning has achieved remarkable success while suffering from low-quality data problems. As a mature technology to improve data quality in computer vision, data augmentation has also attracted increasing attention in graph domain. For promoting the development of this emerging research direction, in this survey, we comprehensively review and summarize the existing graph data augmentation (GDAug) techniques. Specifically, we first summarize a variety of feasible taxonomies, and then classify existing GDAug studies based on fine-grained graph elements. Furthermore, for each type of GDAug technique, we formalize the general definition, discuss the technical details, and give schematic illustration. In addition, we also summarize common performance metrics and specific design metrics for constructing a GDAug evaluation system. Finally, we summarize the applications of GDAug from both data and model levels, as well as future directions.
translated by 谷歌翻译
作为最成功的AI驱动应用程序之一,推荐系统的目的是通过在我们生活的许多方面提供个性化建议,以有效而有效的方式帮助人们做出适当的决定,尤其是针对各种面向人类的在线服务,例如E-商务平台和社交媒体网站。在过去的几十年中,推荐系统的快速发展通过创造经济价值,节省时间和精力以及促进社会利益,从而使人类受益匪浅。但是,最近的研究发现,数据驱动的推荐系统可能会对用户和社会构成严重威胁,例如传播虚假新闻以操纵社交媒体网站中的公众舆论,扩大不公平为代表性不足的团体或在工作匹配服务中的个人,或从建议结果中推断隐私信息。因此,系统的可信赖性一直吸引着各个方面的关注,以减轻推荐系统引起的负面影响,以增强公众对推荐系统技术的信任。在这项调查中,我们提供了可信赖的推荐系统(TREC)的全面概述,特别关注六个最重要的方面;即安全与鲁棒性,非歧视与公平,解释性,隐私,环境福祉以及问责制和可审计性。对于每个方面,我们总结了最近的相关技术,并讨论了潜在的研究方向,以帮助未来实现值得信赖的推荐系统。
translated by 谷歌翻译
创伤性脑损伤(TBI)患者的脑网络分析对于其意识水平评估和预后评估至关重要,这需要分割某些意识相关的大脑区域。但是,由于很难收集TBI患者的手动注释的MR扫描,因此很难构建TBI分割模型。数据增强技术可用于缓解数据稀缺问题。但是,常规数据增强策略(例如空间和强度转化)无法模仿创伤性大脑中的变形和病变,这限制了后续分割任务的性能。为了解决这些问题,我们提出了一种名为TBIGA的新型医学图像授课模型,以通过配对的脑标签图合成TBI MR扫描。我们的TBIGAN方法的主要优势在于,它可以同时生成TBI图像和相应的标签映射,这在以前的医学图像的先前涂上方法中尚未实现。我们首先按照粗到细节的方式在边缘信息的指导下生成成分的图像,然后将合成强度图像用作标签上填充的先验。此外,我们引入了基于注册的模板增强管道,以增加合成图像对的多样性并增强数据增强能力。实验结果表明,提出的TBIGAN方法可以产生具有高质量和有效标签图的足够合成的TBI图像,这可以大大改善与替代方案相比的2D和3D创伤性脑部分割性能。
translated by 谷歌翻译
图形学习模型是研究人员探索图形结构数据的关键工具。为了训练功能强大的图形学习模型,常规方法使用足够的训练数据来训练单个设备上的图形模型。但是,由于隐私问题,在实际情况下这样做是令人难以置信的。联合学习提供了一种可行的解决方案,可以通过引入各种隐私性机制(例如图形边缘的差异隐私)来解决此类限制。然而,联合图学习中的差异隐私可确保图表中维护的分类信息。它降低了图形学习模型的性能。在本文中,我们研究了如何在图形边缘实施差异隐私,并观察实验中的性能下降。我们还注意到,图形边缘的差异隐私引入了扰动图邻近性的噪音,这是图形对比度学习中的图形增强。受到的启发,我们建议利用图形对比学习的优势,以减轻差异隐私引起的性能下降。广泛的实验是通过几种代表性的图形模型和广泛使用的数据集进行的,表明对比度学习确实减轻了由差异隐私引起的模型的性能下降。
translated by 谷歌翻译
最近的研究表明,基于神经网络的深度推荐系统容易受到对抗性攻击的影响,攻击者可以将精心制作的虚假用户配置文件(即,伪造用户与之互动的一组项目)注入目标推荐系统,以实现恶意目的,例如促进或降低一组目标项目。由于安全性和隐私问题,在黑框设置下执行对抗性攻击更为实用,在黑框设置下,攻击者无法轻松访问目标系统的体系结构/参数和培训数据。但是,在Black-Box设置下生成高质量的假用户配置文件,对于目标系统的资源有限,这是一项挑战。为了应对这一挑战,在这项工作中,我们通过利用项目的属性信息(即项目知识图)引入了一种新颖的策略,这些信息可以公开访问并提供丰富的辅助知识来增强伪造用户配置文件的产生。更具体地说,我们提出了一项知识增强的黑框攻击框架(KGATTACK),以通过深度强化学习技术有效地学习攻击政策,其中知识图无缝集成到层次结构策略网络中,以生成伪造的用户配置文件,以表演对抗性黑色 - 黑色 - - 黑色 - 黑色 - 盒子攻击。在各种现实世界数据集上进行的全面实验证明了在黑框设置下提出的攻击框架的有效性。
translated by 谷歌翻译
联合学习框架通常需要协作者共享共同模型的本地渐变更新,而不是共享培训数据以保留隐私。但是,在梯度泄漏攻击的事先工作表明,可以从梯度揭示私人培训数据。到目前为止,几乎所有相关工程都基于完全连接或卷积神经网络的攻击。鉴于近期适应变压器以解决多种愿景任务的绝大多大浪潮,调查视觉变压器的隐私风险是非常有价值的。在本文中,我们分析了基于自我关注机制的渐变泄漏风险,以理论和实用的方式。特别是,我们提出了4月 - 注意隐私泄漏,这对自我关注的博览会造成了强烈的威胁,如vit。展示视觉变压器如何通过梯度泄露隐私泄漏的风险,我们敦促设计隐私更安全的变压器模型和防守方案的重要性。
translated by 谷歌翻译
标识识别的挑战之一在于形式的多样性,例如符号,文本或两者的组合;此外,徽标在设计中往往非常简洁,而外观类似,表明学习歧视性表示的难度。为了调查徽标的品种和表示,我们介绍了Makeup216,这是来自现实世界的化妆领域的最大和最复杂的Logo数据集。它包括216个标志和157个品牌,包括10,019个图像和37,018个注释的徽标对象。此外,我们发现纯粹徽标周围的边缘背景可以提供重要的上下文信息,并提出了对抗主题的普发提徒注意力表示框架(AAR),分别参加徽标主体和辅助边缘背景,这可以组合以获得更好的表示。我们所提出的框架在Makeup216和另一个大型开放标识数据集中实现了竞争结果,可以为徽标识别提供新的思考。 MakeUp216的数据集及建议框架的代码即将发布。
translated by 谷歌翻译
本文回顾了关于压缩视频质量增强质量的第一个NTIRE挑战,重点是拟议的方法和结果。在此挑战中,采用了新的大型不同视频(LDV)数据集。挑战有三个曲目。Track 1和2的目标是增强HEVC在固定QP上压缩的视频,而Track 3旨在增强X265压缩的视频,以固定的位速率压缩。此外,轨道1和3的质量提高了提高保真度(PSNR)的目标,以及提高感知质量的2个目标。这三个曲目完全吸引了482个注册。在测试阶段,分别提交了12个团队,8支球队和11支球队,分别提交了轨道1、2和3的最终结果。拟议的方法和解决方案衡量视频质量增强的最先进。挑战的首页:https://github.com/renyang-home/ntire21_venh
translated by 谷歌翻译
我们建议利用模拟的潜力,以域的概括方式对现实世界自动驾驶场景的语义分割。对分割网络进行了训练,没有任何目标域数据,并在看不见的目标域进行了测试。为此,我们提出了一种新的域随机化和金字塔一致性的方法,以学习具有高推广性的模型。首先,我们建议使用辅助数据集以视觉外观的方式随机将合成图像随机化,以有效地学习域不变表示。其次,我们进一步在不同的“风格化”图像和图像中实施了金字塔一致性,以分别学习域不变和规模不变的特征。关于从GTA和合成对城市景观,BDD和Mapillary的概括进行了广泛的实验;而我们的方法比最新技术取得了卓越的成果。值得注意的是,我们的概括结果与最先进的模拟域适应方法相比甚至更好,甚至比在训练时访问目标域数据的结果。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译